Chapter12 IP weighting and marginal structures models

SeokHoon Park

August 5, 2021

Seoul National University

1 The causal question

- **2** Estimating IP weights via modeling
- **3** Stabilized IP weights

4 Marginal structural models

Table of Contents

1 The causal question

2 Estimating IP weights via modeling

Stabilized IP weights

- Goal: Estimate the average causal effect of smoking cessation A weight gain Y
- causal effect := $E(Y^{a=1}) E(Y^{a=0})$
- E(Y^{a=1}): mean weight gain that would have been observed if all individuals in the population had quit smoking before the follow-up visit

- Average association effect := E(Y|A = 1) E(Y|A = 0)
- L=(sex,age,race,education,intensity and duration of smoking,physical activity in daily life, recreational exercise, weight): Confounder

•
$$E(Y^{a=1}) - E(Y^{a=0}) \neq E(Y|A=1) - E(Y|A=0)$$

• We trying to adjust for these covariates with IP weighting

1 The causal question

2 Estimating IP weights via modeling

3 Stabilized IP weights

- IP weighting creates a pseudo-population in which the arrow from the covariates L to the treatment A is removed
- Pseudo-population has the following two properties
 - 1 A and L are statistically independent
 - 2 $E_{ps}(Y|A = a) = \sum_{l} E(Y|A = a, L = l)Pr(L = l)$

- The individual-specific IP weights for treatment $W^A := \frac{1}{f(A|L)}$
- For Dichotomous treatment A , f(A|L) = Pr(A = 1|L)
- In section 2.4, We estimated Pr(A = 1|L) nonparametrically
- In this chapter, we estimated Pr(A = 1|L) with logistic regression model

- **1** Estimate Pr(A = 1|L) with logistic regression model
- Ocreate pseudo population by using IP weight
- S Estimate $E_{ps}(Y|A=1) E_{ps}(Y|A=0)$ in pseudo population
- If there is no confounding for the effect of A in the pseudo-population and the model for Pr(A = 1|L) is correct, association is causation and an unbiased estimator of $E_{ps}(Y|A = 1) E_{ps}(Y|A = 0)$ in the pseudo-population is also an unbiased estimator of $E(Y^{a=1}) E(Y^{a=0})$ in the actual population

- Estimating E_{ps}(Y|A = 1) E_{ps}(Y|A = 0) in the pseudo-population is to fit the linear mean model E(Y|A) = θ₀ + θ₁A by weighted Least square
- Find θ_0 and θ_1 such that minimize $\sum_{i=1}^{n} (\hat{W}_i(Y_i \theta_0 \theta_1 A))^2$ where $\hat{W}_i = \frac{1}{\hat{P}r(A=1|L)}$ for quiiter, $\hat{W}_i = \frac{1}{1 - \hat{P}r(A=1|L)}$ for non-quiiter

1 The causal question

2 Estimating IP weights via modeling

3 Stabilized IP weights

- Stabilized IP weighing is another way to create a pseudo-population in which A and L are independent
- IP weights $W^A := \frac{1}{f(A|L)}$
- Stabilized IP weights $SW^A := \frac{f(A)}{f(A|L)}$

- Stabilized IP weights have more narrow confidence interval range than IP weights
- Pseudo population made by stabilized IP weights would be of the same size as the study population

a

- 2 Estimating IP weights via modeling
- **3** Stabilized IP weights

4 Marginal structural models

- $E(Y^a) = \beta_0 + \beta_1 a$: Marginal structural mean model , where Y^a :counterfactual
- Causal effect $\beta_1 = E(Y^{a=1}) E(Y^{a=0})$
- In pseudo population, fit $E(Y|A) = \theta_0 + \theta_1 A$
- In pseudo population, the association is causation
- So, $\hat{ heta}_1$ is consistent estimator of eta_1